NOM: Prénom:

1. La suite (u_n) dont on donne les termes consécutifs suivants peut-elle être une suite géométrique?

$$u_1 = 3$$
 $u_2 = 5, 5$ $u_3 = 7.$

2. La suite (w_n) dont on donne les termes consécutifs suivants peut-elle être une suite géométrique?

$$w_1 = 16$$
 $w_2 = 8$ $w_3 = 4$.

Exercice 2: (5 points)

Dire si les suites suivantes sont des suites géométriques en justifiant votre réponse.

- 1. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_{n+1} = 3u_n + 1$ et $u_0 = 1$.
- 2. La suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = (n+1)^2$.
- 3. La suite (w_n) définie pour tout $n \in \mathbb{N}$ par $w_n = 4^{n+2}$.

Exercice 3: (5 points)

On considère une suite (u_n) géométrique de raison q=3 et de premier terme $u_0 = 1$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Déterminer le terme général de la suite (u_n) et calculer u_{10} .
- 3. Calcular $\sum_{k=0}^{n} u_k = u_0 + u_1 + \ldots + u_{12}$.

Dans une ville, on estime qu'à partir de 2013, le nombre de voitures électriques en circulation augmente de 12 % par an. Au 1er janvier 2013, cette ville propose 148 places de parking spécifiques avec borne de recharge. La commune prévoit de créer chaque année 13 places supplémentaires. La feuille de calcul ci-dessous doit rendre compte de ces données. Les cellules sont au format « nombre à zéro décimale ».

	A	В	С	D	E
1	Date: 1 ^{er} janvier	2013	2014	2015	2016
2	Voitures électriques	100	112		
3	Places spécifiques	148	161		

Partie A

Soit n un entier naturel. Le nombre de voitures électriques en circulation au 1^{er} janvier de l'année (2013 + n) est modélisé par le terme V_n d'une suite géométrique. Ainsi $V_0 = 100$.

- 1. Déterminer la raison de la suite (V_n) .
- 2. Préciser l'expression de V_n en fonction de n.
- 3. Calculer V_8 et V_9 arrondis à l'unité.

Partie B

Soit n un entier naturel. On note P_n le nombre de places de parking spécifiques au 1^{er} janvier de l'année (2013 + n). Ainsi $P_0 = 148$.

- 1. Justifier par une phrase la nature de la suite (P_n) et en déduire l'expression de P_{n+1} en fonction de P_n .
- 2. Montrer que pour tout entier naturel $n: P_n = 13n + 148$.
- 3. En quelle année le nombre de places de parking spécifiques dépassera-t-il pour la première fois 250?

Partie C

En utilisant les parties A et B, déterminer l'année à partir de laquelle on peut prévoir que le nombre de places de parking spécifiques sera insuffisant. La méthode employée pour répondre à cette question devra être expliquée.