Chapitre 3

Droites, plans et vecteurs de l'Espace

Sommaire

I. I	Positions relatives des droites et plans
1.	Positions relatives de deux droites
2.	Positions relatives d'une droite et d'un plan
3.	Positions relatives de deux plans
II. I	Parallélisme et propriétés
1.	Pour les droites
2.	Pour les droites et les plans
3.	Pour les plans
III. (Géométrie Vectorielle
1.	Définition d'un vecteur dans l'espace
2.	Repérage dans l'espace
3.	Vecteurs colinéaires

Capacités :	Exercices :	Non Acquis	Acquis
Etudier la position relative des droites et plans	17 et 18 p. 327		
Construire l'intersection de droites, plans et solides	23, 68 et 70 p. 336		
Traduire la colinéarité, l'alignement et décomposer un vecteur	1 p. 326		

Introduction

Michel CHASLES (1793 à 1880) est un mathématicien français ayant apporté d'importantes découvertes en ce qui concerne la géométrie. Il a également travaillé sur l'histoire de la géométrie permettant de mettre en lumière des résultats oubliés de DESARGUE et LA HIRE.

Une anecdote:

CHASLES collectionneur d'autographes, fut la proie de VRAIN-LUCAS, faussaire, qui abusa de la crédulité du mathématicien. CHASLES alla jusqu'à payer 200 000 francs une lettre de Marie-Madeleine à Lazare.

Positions relatives des droites et plans

Pour déterminer une droite dans l'espace, on a besoin de 2 points distincts (ou un point et un vecteur

Pour déterminer un plan dans l'espace, on a besoin de 3 points non alignés (ou d'une droite et un point n'appartenant pas à cette droite ou d'un point et deux vecteurs non colinéaires).

- Remarque 3.2 : ----

Un plan défini par trois points A, B et C est noté (ABC).

1. Positions relatives de deux droites

Définition 3.3 : — Droites coplanaires

Deux droites contenues dans un même plan sont dites coplanaires.

-- Propriété 3.4 :-----

On considère deux droites det d'.

on considere deux droites e	considere deux droites a et a : $d \ \mathbf{et} \ d' \ \mathbf{coplanaires}$				
	d' sont contenues dar ces sont sécantes ou p	Il n'y a pas de plan qui contient les deux droites			
Sécantes	Parallèles				
d d d	$\sqrt{\frac{d'}{d'}}$	$\sqrt{\frac{d'}{d}}$	d' d		
$d\cap d'=\{M\}$	$d\cap d'=\emptyset$	$d \cap d' = d$	$d\cap d'=\emptyset$		

$-Exemple \,\, 3.5:$ -------

Représenter en perspective cavalière un cube ABCDEFGH, puis donner un exemple de deux droites sécantes, deux droites parallèles et deux droites ni sécantes ni parallèles.

Compl'ement(s):

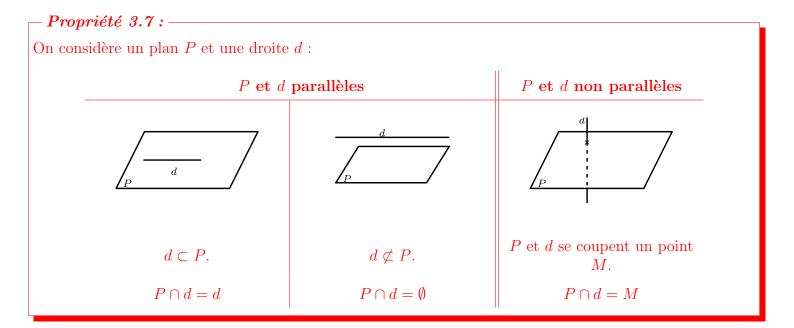
Méthode 1 p. 315 : « Etudier la position relative de deux droites ».

2. Positions relatives d'une droite et d'un plan

Définition 3.6 : — Plan parallèle à une droite -

On considère un plan P et une droite d de l'espace.

On dit que la plan P est parallèle à d si et seulement si il existe une droite d' incluse dans P qui est parallèle à d.



$-Exemple \,\, 3.8:-$

Représenter en perspective cavalière un cube ABCDEFGH, puis donner un exemple d'un plan et d'une droite illustrant chacun des cas précédent.

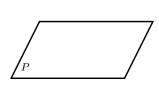
3. Positions relatives de deux plans

- *Propriété 3.9 :* -----

On considère deux plans P et P':

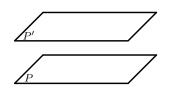
P et P' parallèles

P et P' non parallèles



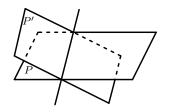
P P' sont confondus.

 $P \cap P' = P$



P et P' sont parallèles.

 $P \cap P' = \emptyset$



P et P' se coupent une droite Δ .

 $P \cap P' = \Delta$

Exemple 3.10:———

Représenter en perspective cavalière un cube ABCDEFGH, puis donner un exemple de deux plans illustrant chacun des cas précédent.

© Exercice(s):

Exercices 17 et 18 p. 327

II. Parallélisme et propriétés

1. Pour les droites

-- Propriété 3.11 : -----

Dans tout plan de l'espace, on peut appliquer les propriétés de géométrie plane.

Deux droites parallèles sont coplanaires.

-- Propriété 3.13 : ------

Deux droites parallèles à une même droite sont parallèles entre elles.

2. Pour les droites et les plans

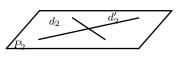
- *Propriété 3.14 :* -----

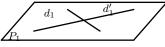
Une droite est parallèle à un plan lorsqu'elle est parallèle à une droite du plan.

3. Pour les plans

– Propri'et'e~3.15: —

Deux plans sont parallèles si et seulement si il existe deux droites sécantes de l'un parallèles à deux droites sécantes de l'autre.

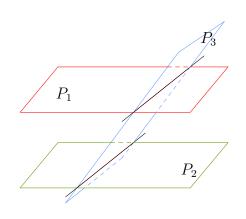




- Propri'et'e $\it 3.16:$ -

Si deux plans P_1 et P_2 sont parallèles alors tout autre plan P_3 qui coupe P_1 coupe P_2 aussi.

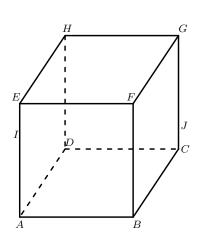
De plus, si $P_1 \cap P_3 = d_1$ et $P_2 \cap P_3 = d_2$ alors d_1 et d_2 sont parallèles.



Exemple 3.17:—

On considère le cube ABCDEFGH et deux points I et J placés respectivement sur les arêtes [AE] et [CG] dont on donne une représentation en perspective cavalière.

Représenter l'intersection des plans (HIJ) et (ABC), puis représenter l'intersection du plan (HIJ) avec le cube.



Complément(s):

Méthode 2 p. 315 : « Construire l'intersection d'une droite et d'un plan, de deux plans ».

riangle Exercice(s):

Exercices 23, 68 et 70 p. 336

III. Géométrie Vectorielle

1. Définition d'un vecteur dans l'espace

Remarque 3.18:

On étend la notion de vecteur du plan vue en 2nde à l'espace.

Notamment en physique, on définit un vecteur \overrightarrow{AB} par sa direction (la droite (AB)), son sens (de A vers B) et sa norme (la longueur AB).

– $Propricute{e}tcute{e}\ 3.19:$ ———

Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si le quadrilatère ABDC est un parallélogramme, éventuellement aplati.

Autrement dit

$$\overrightarrow{AB} = \overrightarrow{CD} \iff ABDC$$
 parallélogramme

Définition 3.20 : — Vecteur nul

un vecteur \overrightarrow{AB} est dit nul lorsque les points A et B sont confondus.

On le note $\overrightarrow{AB} = \overrightarrow{0}$

Définition 3.21 : — Opposé d'un vecteur

Le vecteur opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} . On note $\overrightarrow{AB} = -\overrightarrow{BA}$

Définition 3.22 : — Somme de deux vecteurs

On considère deux vecteurs \overrightarrow{u} et \overrightarrow{v} , on appelle somme des vecteurs \overrightarrow{u} et \overrightarrow{v} , le vecteur \overrightarrow{w} associé à la translation résultant de l'enchainement des translations de vecteur \overrightarrow{u} et de vecteur \overrightarrow{v} .

Propriété 3.23 : — Relation de Chasles

On considère trois points A, B et C, on a alors :

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Exemple 3.24 : ——

Simplifier $\overrightarrow{AC} + \overrightarrow{BC} - \overrightarrow{AB} + \overrightarrow{CB}$.

- *Propriété 3.25 :* ----

On considère deux nombres réels k et k' et deux vecteurs \overrightarrow{u} et \overrightarrow{v} , alors :

•
$$(k+k')\overrightarrow{u} = k\overrightarrow{u} + k'\overrightarrow{u}$$
 • $k(k'\overrightarrow{u}) = (kk')\overrightarrow{u}$

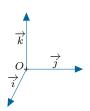
•
$$k(k'\overrightarrow{u}) = (kk')\overrightarrow{u}$$

•
$$k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$$

2. Repérage dans l'espace

Définition 3.26 : Repère de l'espace Un repère $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ dans l'espace est composé d'un point O origine du repère et de trois vecteurs non coplanaires.

On dit alors que ces trois vecteurs forment une base de l'espace.



- *Propriété 3.27 :* -----

Tout point M est alors défini par :

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$
 avec $(x; y; z) \in \mathbb{R}^3$.

Le triplet (x; y; z) est appelé coordonnées du point M dans le repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. x est appelé abscisse de M, y ordonnée de M et z cote de M et on note M(x;y;z).

Exemple 3.28:-

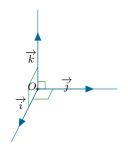
Après avoir représenté le cube ABCDEFGH, indiquer les coordonnées de tous les sommets du cube dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

Définition 3.29 : — Repère orthonormal

Un repère $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ dans l'espace est dit orthonormal si et seulement si :

$$\left\| \overrightarrow{i} \right\| = \left\| \overrightarrow{j} \right\| = \left\| \overrightarrow{k} \right\|$$

$$\overrightarrow{i}, \overrightarrow{j} \overrightarrow{k} \text{ orthogonaux 2 a 2}$$



Définition 3.30 : — Coordonnées d'un point

Dans un repère $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, les coordonnées d'un vecteur \overrightarrow{u} sont les coordonnées du point M tel que $\overrightarrow{OM} = \overrightarrow{u}$.

Lorsque M(x; y; z), on note $\overrightarrow{u}(x; y; z)$ ou $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- *Propriété 3.31 :* -

On considère \overrightarrow{u} et \overrightarrow{v} deux vecteurs de coordonnées respectives $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ alors :

$$\overrightarrow{u} = \overrightarrow{v}$$
 \Leftrightarrow $x = x'$ et $y = y'$ et $z = z'$

Exemple 3.32:

Existe-t-il $x \in \mathbb{R}$ tel que $\overrightarrow{u} = \overrightarrow{v}$ avec $\overrightarrow{u} \begin{pmatrix} x^2 \\ x-1 \\ -2 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 1 \\ -2 \\ x-1 \end{pmatrix}$?

- *Propriété 3.33 :* ----

On considère deux points $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$.

• Le vecteur \overrightarrow{AB} a pour coordonnées :

$$\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$

ullet Le milieu I de [AB] a pour coordonnées

$$I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$$

• La longueur AB est donnée par :

$$AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2 + (z_A - z_B)^2}$$

- **Exemple 3.34** : -

On considère deux points A(3;7;6) et B(-1;4;-9).

Déterminer les coordonnées du vecteur \overrightarrow{AB} et les coordonnées du milieu du segment [AB].

Propriété 3.35 : -

On considère \overrightarrow{u} et \overrightarrow{v} deux vecteurs de coordonnées respectives $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ et k un nombre réel.

Alors
$$\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$$
 et $k \overrightarrow{u} \begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$.

- Exemple 3.36 : -

Soit $\overrightarrow{AB} \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}$ et les points C et D tels que $\overrightarrow{AC} = 4\overrightarrow{AB}$ et $\overrightarrow{AD} = -3\overrightarrow{AB}$.

Déterminer les coordonnées des vecteurs \overrightarrow{AC} et \overrightarrow{AD} .

3. Vecteurs colinéaires

Définition 3.37: — Vecteurs colinéaires

On dit que deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si il existe un nombre réel k tel que $\overrightarrow{u} = k \overrightarrow{v}$.

Remarque 3.38:———

Deux vecteurs colinéaires ont la même direction.

M'ethodologie~3.39: — $Montrer~qu'un~quadrilat\`ere~est~un~parall\'elogramme$

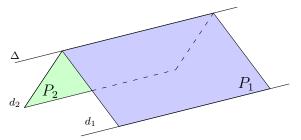
On considère un tétraèdre ABCD. On considère les points $I,\ J,\ K$ et L définis par :

$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$$
 $\overrightarrow{BJ} = \frac{1}{3}\overrightarrow{BC}$ $\overrightarrow{CK} = \frac{2}{3}\overrightarrow{CD}$ $\overrightarrow{DL} = \frac{1}{3}\overrightarrow{DA}$

- 1. Faire une figure
- 2. Exprimer \overrightarrow{IJ} et \overrightarrow{LK} en fonction du vecteur \overrightarrow{AC} .
- 3. En déduire que lJKL est un parallélogramme.

Théorème 3.40 : — Théorème du toit

On considère deux plans P_1 et P_2 tels que $d_1 \subset P_1$ et $d_2 \subset P_2$ avec d_1 et d_2 soient parallèles. Si P_1 et P_2 sont sécants en une droite Δ , alors les droites d_1 , d_2 et Δ sont parallèles entre elles.



Comp	lé $ment$	(s)) :
Comp	CITOCIOO		, .

Méthode 2 p. 311 : « Montrer que deux vecteurs sont colinéaires ».

riangle Exercice(s) : _

Exercice 1 p. 326